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Abstract— There are many well-known sources of nonlinearity
present in hyperspectral imagery; these include bi-directional re-
flectance distribution function (BRDF) effects, multi-path scatter
between heterogeneous pixel constituents, and the variable pres-
ence of water, an attenuating medium, in the scene. In recent pub-
lications, we have presented a data-driven approach to represent-
ing the nonlinear structure of hyperspectral imagery [4]. The ap-
proach relies on graph methods to derive geodesic distances on the
high-dimensional hyperspectral data manifold. From these dis-
tances, a set of manifold coordinates that parameterizes the data
manifold is derived. Because of the computational and memory
overhead required in the geodesic coordinate calculations, the ap-
proach relies on partitioning the scene into subsets where the op-
timal manifold coordinates can be derived in an efficient manner,
followed by an alignment stage during which the embedded man-
ifold coordinates for each subset are aligned to a common man-
ifold coordinate system. In [4], we demonstrated the feasibility
of the coordinate and alignment methodology and the ability of
the manifold approach to provide higher data compression and
more effective classification when compared with linear methods.
In this paper we develop an improved approach to the manifold
coordinate alignment phase with an improved sampling method-
ology. Results are demonstrated using examples of hyperspectral
imagery derived from PROBE2 hyperspectral scenes of the Vir-
ginia Coast Reserve barrier islands.

I. INTRODUCTION AND BACKGROUND

A. Nonlinearity in Hyperspectral Imagery

Nonlinearity in hyperspectral imagery is a significant source
of estimation errors in derived products. Sources of non-
linearity include: (1) nonlinear variations in reflectance pro-
duced by variations in sun-canopy-sensor geometry in the land-
scape [15] [9], (2) multi-path scatter among sub-pixel con-
stituents [12] [14], violating the traditional linear mixing as-
sumptions, (3) the variable presence of water, an attenuating
medium [11] in the scene. Some of the errors that we observed
in mapping products that we previously derived in [2] [3] be-
came the motivation for finding new methods of modeling non-
linear structure in hyperspectral data [4]. In the next two sub-
sections, we give a brief overview of the approach that we pre-
sented in [4] as a preamble to introducing improvements.
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B. Manifold Coordinate Representations

In [4], we described a new method for modeling nonlinear
effects in hyperspectral imagery and demonstrated that it pro-
vided a better means of discriminating land-cover types with
a high-degree of spectral similarity. Using examples from
AVIRIS and PROBE2 imagery, we also showed that our new
approach provides better compression of HSI data in both ter-
restrial and aquatic imagery. The new method involves a data-
driven estimation of a set of coordinates that parameterizes the
high-dimensional hyperspectral data manifold. The method
proceeds by calculating the local spectral neighborhood dis-
tances where linearity is assumed to hold about each sample
and then determining the shortest nonlinear path (geodesic) dis-
tances to all other spectral samples outside the spectral neigh-
borhood. These distances are then used to derive the manifold
coordinate system that parameterizes the high-dimensional hy-
perspectral data manifold. In [4], we also described methods
for achieving computationally scalable implementations of this
approach. In Figure 1, we provide a conceptual representation
of manifold coordinate estimation; note that the manifold coor-
dinate system parameterizes the high-dimensional (124 chan-
nels in this example) HSI data manifold, so that linear distance
in the coordinates corresponds to a nonlinear distance over the
surface of the original higher-dimensional data. In Section IV,
examples of this processing applied to PROBE2 hyperspectral
imagery from our Virginia Coast Reserve barrier islands study
site are provided.

The fundamental computational steps are: partition the scene
into a set of computationally tractable “tiles”, then the compu-
tation of a low-dimensional set of manifold coordinates using
the Isometric Mapping (ISOMAP) [18] algorithm, and finally
a manifold alignment stage using a reconstruction algorithm
in which coordinate transformations are derived between the
manifold coordinates of the tiles [4]. Note that the definition
of “tractable” was addressed in [4], but improved scaling pre-
sented in Section II expands the scale of what is considered a
computationally feasible tile size. The ISOMAP portion of the
computations involves the following steps: (1) given a speci-
fied metric such as Euclidean, spectral angle, or some other ap-
propriate choice, determine the spectral neighborhoods (initial
sparse neighborhood graph) where linearity holds, maintaining
a list for each sample of its neighbors and metric distances; (2)
at each sample, for all distances outside the neighborhood, use
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Fig. 1. Conceptual view of manifold coordinate system. (Left) PROBE2 im-
age subset, showing the source data of 124 spectral channels. (Center) RGB
triplet shows a false color image of the scene derived from wavelengths at
0.63, 1.29, and 2.22 µm for the subset over Smith Island, VA, October 18,
2001; shown: uplands, brackish and fresh water marshes, dunes, beach, and
surf zone. (Right, top) Corresponding scatterplot of the reflectance of these ar-
bitrarily chosen channels, reveal a highly nonlinear HSI data manifold. (Right,
bottom) Manifold coordinate system parameterizes the HSI spectral data (note
that the coordinates are a parameterization of the full spectral data, not just the
three arbitrarily displayed channels).

Dijkstra’s algorithm [7] [16] with a minimum priority queue to
relax the closest edge not already attached to the graph dG to
compute the shortest nonlinear path (geodesic) distance to all
other samples (note that this is a graph calculation and that the
metric, therefore, is not involved here but is only evaluated in
step (1) inside the neighborhood); (3) if there are any remain-
ing distances which can not be connected in the distance graph,
attach pockets of isolated points to each other in the graph by
find the closest linear distance between pairs of isolated pock-
ets, thus preserving the geodesic structure of each and ensuring
a minimal spanning tree [4] 1; after attaching all points sym-
metrize to ensure consistency of paths in both directions; (4)
with the full NxN (N=number of spectral samples) geodesic
distance matrix calculated in steps (1) and (2), compute the sec-
ond order variation in the geodesic distances, τ = − 1

2HT SH ,
where Sij = ((dG)ij)2 and Hij = δij − 1

N is a centering ma-
trix ; and (5) extract s (s << N ) manifold coordinates from the
most significant eigenvectors and eigenvalues of the NxN ma-
trix τ with the ith manifold coordinate given by �Mi =

√
λi�vi.

C. Scalable Algorithms

In [4], we addressed the computational and memory scaling
issues associated with manifold coordinate calculations at re-
mote sensing scales where we may typically want to process
O(106−107) pixels in a single hyperspectral scene. One of the
principal limiting factors was memory which scaled as O(N2)
because of the need to store dG. Computationally, the Dijkstra
alogrithm with a minimum priority queue implementation [16]

1Note that this can be accomplished by iteratively attaching the closest
unattached sample to the graph and then running the Dijkstra algorithm on the
first row of dG until all points have a path to the first point; this ensures efficient
scaling of O(αNlog(N)) with α << N in most cases

ensures that the graph calculation scales as O(N2log(N)).
Because of the computational and memory requirements, we
developed a scaling strategy [4] in which large hyperspectral
scenes are divided into a computationally tractable set of data
blocks or “tiles” for which manifold coordinates can be opti-
mally computed, followed by an alignment phase during which
the embedded manifold coordinates for each tile subset are
aligned to a common manifold coordinate system.

In [4], several strategies for alignment were proposed. These
included: (a) splicing a set of common samples onto each tile
which could serve as guide-posts for manifold alignment, (b)
partitioning the scene into tiles by random or active sampling
followed by an alignment stage, and finally (c) a direct recon-
struction technique, in which full spectral samples from one tile
(derived from the original scene or a decimated subset) were
reconstructed in the spectral space of another tile using the lo-
cally linear property of the manifold. The same set of transfor-
mations apply equally in the manifold coordinate and the full
spectral space. By reconstructing enough samples where there
is sufficient data in each tile for accurate reconstruction, a coor-
dinate transformation can be derived using the pseudoinverse:

P = (MT
i Mi)−1MT

i M∗
j (1)

where Mi is the matrix of manifold coordinate samples from
tile Ti and M∗

j is the corresponding set of coordinates recon-
structed in the manifold coordinate system of tile Tj . When
no sufficiently accurate reconstruction was possible to a pre-
chosen target tile, a series of alignment hops was used between
intermediate tiles possessing common features of source and
target tiles.

The reconstruction method was determined to be the most ef-
fective of the manifold alignment strategies, with the others less
effective, primarily because of sampling limitations that result
from restrictions on tile size imposed by memory limitations.
In the next section, however, we incorporate a method which
allows the dG to be replaced by a significantly smaller but rep-
resentative matrix that mitigates the memory burden. The re-
duced memory requirements of the modified approach allow
for several of these alignment strategies to be used more prac-
tically or in combination, although because of limited space
we only demonstrate the advantages of the improved scaling
for the manifold alignment strategy based on the reconstruction
principle of Equation 1. In addition, to lower memory require-
ments, the method described in the next Section also stream-
lines other computational issues such as the eigensolution of τ ,
eliminating iterative eigensolvers in favor of more reliable ex-
act solvers appropriate to smaller matrices, and also results in
fewer geodesic distances calculations (the O(N2log(N) Dijk-
stra calculation is now replaced with an O(LNlog(N)) calcu-
lation with L << N .

With the new method described in the next Section, another
additional benefit is that the probability of alignment errors
should be lower since the size of each tile can be larger and
more representative of the scene. This will help to eliminate oc-
casional alignment errors that appeared originally in [4] which
resulted from incomplete constraint of manifold coordinates be-
tween tiles, stemming from the limited sampling available in
each tile. However, one potential challenge with larger tiles is



that more constraints must be satisfied in each alignment be-
cause of the greater diversity of spectral samples represented in
each tile; this potentially requires a more flexible local recon-
struction error criterion that potentially takes account of other
issues such as sample density. A full discussion of the latter
will be taken up in future publications.

II. IMPROVED SCALING FOR MANIFOLD COORDINATE

REPRESENTATIONS

An improvement to the processing speed and memory re-
quirements associated with ISOMAP was described in [6]. The
improved method chooses a set of “landmarks” (L-ISOMAP)
from which all of the manifold geodesic distances dG are cal-
culated. This forms an LxN geodesic distance matrix with
L << N . The symmetric submatrix dL of distances between
landmarks is an LxL matrix whose eigenvalues and eigenvec-
tors form the basis of the embedding of the manifold coordi-
nates. Note that so long as the sampled landmarks span the
space of the embedded manifold coordinates, the landmark dis-
tances are sufficient to calculate the manifold coordinate sys-
tem. Note also that the eigenvector and eigenvalue problem of
a large NxN matrix has been replaced by a smaller LxL prob-
lem. As before, the second order variation in dL is computed
according to: τL = −− 1

2HT SLH , where (SL)ij = ((dL)ij)2.
For τ , iterative methods [17] were used to extract the eigen-
spectrum, however, with the LxL matrix τL, more reliable ex-
act eigensolvers can be employed. Once the most significant
eigenvalues and eigenvectors of τL have been determined, the
manifold coordinates of the remaining non-landmark samples
can be computed by a simple linear transformation since their
distances to the landmark positions are all known:

M(�x) = PL ∗ ((∆̄ − ∆) (2)

where M(�x) is the embedded manifold coordinate of spectral
sample x, P is a matrix whose ith row is:

(PL)i =
(�vL)i√
(λL)i

(3)

where (�vL)i and (λL)i are the ith eigenvector and eigenvec-
tor of τL, ∆̄i = ELj

(((dL)LiLj
)2) is the mean squared dis-

tance from the ith landmark to all other landmarks, and ∆ij =
((dL)Lij)

2 is the squared distance from sample j to the ith land-
mark.

III. HYPERSPECTRAL TIME SERIES AND STUDY SITE

In May 2000, we began airborne hyperspectral data acqui-
sitions over a subset of the Virginia barrier islands, collectively
known as the Virginia Coast Reserve [19] [10] [13] show in
Figure 2. A time series of airborne hyperspectral images has
been collected over the region outlined in boxes in Figure 2.
Beginning with a single scene over Smith Island, VA in May
2000 by HyMAP, acquisitions have continued to the present
day and have included scenes covering the seven islands be-
tween Smith and Hog Islands inclusive in summer and fall of
2001 and 2002. Parramore Island was also added during the

2002 fall collection and included in all subsequent collections.
COMPASS acquired data over the same set of islands in fall
2003. In 2004, the Naval Research Laboratory’s PHILLS [8]
began acquiring imagery over the island chain twice annually
in spring and summer.

Fig. 2. Virginia Coast Reserve study area and adjacent mainland (Northamp-
ton and Accomack counties) shown in a Landsat TM image from August 6,
1999. Red boxes outline regions where our airborne hyperpspectral imagery
time series has been collected between 2000-2005 by a variety of sensors in-
cluding HyMAP, PROBE2, COMPASS, and PHILLS.

One focus of our research at the Virginia Coast Reserve site
has been the devlopment and testing of algorithms for detailed
species-level mapping of coastal land-cover [2] [3] [1] [4]. Us-
ing the hyperspectral time series, we have developed fast online
methods for fusing the clasification results from multi-temporal
inputs, for example, mapping products developed for different
seasons [3]. The fusion of classifier results uses smooth esti-
mated measures of classifier reliability to determine a final cat-
egory at each pixel. Extensive ground truth data has been col-
lected by us [2] [3] throughout all of the islands in the chain, in-
cluding both in situ reflectance data, BRDF, and more recently
biophysical data including biomass, canopy light penetration,
leaf area index (LAI), and leaf optical measurements [5].

IV. RESULTS

Our first example illustrates the advantage of L-ISOMAP ap-
plied to the problem of single tile optimization. Because com-
putational and memory requirements are lower for L-ISOMAP,
we are able to derive the manifold coordinates directly for
whole cross-sections of the scene treated as a single tile; typ-
ically this means an increase in tile size by more than an order
of magnitude when compared with the tile size used in [4] (see
Figure 3). In Figure 4, we show an example derived from one
of these enlarged tiles taken from the northern end of the Smith
Island PROBE2 hyperspectral scene originally depicted in Fig-
ure 4. Also shown are example manifold coordinates (2-3-4)
derived using the L-ISOMAP processing. This end of Smith
Island is dominated by salt marsh, dunes, beach, and tidal es-
tuaries and channels connecting to the Atlantic Ocean. A rich
structure related to species distribution and perhaps biophysi-
cal parameters is delineated in the manifold coordinates. In our



Fig. 3. RGB image derived from PROBE2 HSI scene of Smith Island, VA ac-
quired October 18, 2001, and typical tile size used in our previously published
alignment of tile HSI manifold coordinates, showing an N=(75x75) pixel tile
size. Note that because second order geodesic distance matrix τ is O(N2) a
machine memory limit of 1GB would impose a tile size limit of N=(105x105).
Also shown, typical tile size made possible by landmarks processing which
has memory requirements of O(LN ) with L << N .

Fig. 4. (Top) Subset of PROBE2 hyperspectral scene shown in Figure 3:
a cross-section of the northern end of Smith Island. (displayed wavelengths:
0.65, 0.55, 0.45 µm). (Bottom) Manifold coordinates 2-3-4 obtained using
L-ISOMAP, showing extensive structure in marsh zones and shallow water.

second example (Figure 5), we portray the alignment of two of
these enlarged tiles for another scene of Hog Island, VA taken
by PROBE2, also on October 18, 2001. The Figure shows a
section of the northern end of Hog Island, with a diverse cross-
section of the island portrayed, including salt marsh, upland
zones, brackish and fresh water marsh species, dune environ-
ment, and beaches. This island subset was partitioned into two
different cross-island swaths (tiles); manifold coordinates were
obtained using L-ISOMAP and then the manifold coordinates
were aligned using the method described in [4].
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